Environment-Clean-Generations

Environment-Clean-Generations
THE DEFINITIVE BLOG FOR EVERYTHING YOU NEED TO KNOW ABOUT THE ENVIRONMENT YOU LIVE IN, WITH REFERENCE TO LIFE, EARTH AND COSMIC SPACE SCIENCES, PRESENTED BY ENVIRONMENTAL ENGINEER DORU INDREI, ENVIRONMENTAL QUALITY AND ENERGY SPACIALIST
"Life is not about what we know, but what we don't know, craving the unthinkable makes it so amazing, that is worth dying for." Doru Indrei
Custom Search
Showing posts with label hydrogen. Show all posts
Showing posts with label hydrogen. Show all posts

In Third-Degree Burn Treatment, Hydrogel Helps Grow New, Scar-Free Skin


Johns Hopkins researchers have developed a jelly-like material and wound treatment method that, in early experiments on skin damaged by severe burns, appeared to regenerate healthy, scar-free tissue.

In the Dec. 12-16 online Early Edition of Proceedings of the National Academy of Sciences, the researchers reported their promising results from mouse tissue tests. The new treatment has not yet been tested on human patients. But the researchers say the procedure, which promotes the formation of new blood vessels and skin, including hair follicles, could lead to greatly improved healing for injured soldiers, home fire victims and other people with third-degree burns.
The treatment involved a simple wound dressing that included a specially designed hydrogel -- a water-based, three-dimensional framework of polymers. This material was developed by researchers at Johns Hopkins' Whiting School of Engineering, working with clinicians at the Johns Hopkins Bayview Medical Center Burn Center and the Department of Pathology at the university's School of Medicine.



Third-degree burns typically destroy the top layers of skin down to the muscle. They require complex medical care and leave behind ugly scarring. But in the journal article, the Johns Hopkins team reported that their hydrogel method yielded better results. "This treatment promoted the development of new blood vessels and the regeneration of complex layers of skin, including hair follicles and the glands that produce skin oil," said Sharon Gerecht, an assistant professor of chemical and biomolecular engineering who was principal investigator on the study.

Gerecht said the hydrogel could form the basis of an inexpensive burn wound treatment that works better than currently available clinical therapies, adding that it would be easy to manufacture on a large scale. Gerecht suggested that because the hydrogel contains no drugs or biological components to make it work, the Food and Drug Administration would most likely to classify it as a device. Further animal testing is planned before trials on human patients begin. But Gerecht said, "It could be approved for clinical use after just a few years of testing."

..........................................................................................................................................................
...........................................................................................................................................................


John Harmon, a professor of surgery at the Johns Hopkins School of Medicine and director of surgical research at Bayview, described the mouse study results as "absolutely remarkable. We got complete skin regeneration, which never happens in typical burn wound treatment."

If the treatment succeeds in human patients, it could address a serious form of injury. Harmon, a coauthor of the PNAS journal article, pointed out that 100,000 third-degree burns are treated in U. S. burn centers like Bayview every year. A burn wound dressing using the new hydrogel could have enormous potential for use in applications beyond common burns, including treatment of diabetic patients with foot ulcers, Harmon said.
Guoming Sun, Gerecht's Maryland Stem Cell Research Postdoctoral Fellow and lead author on the paper, has been working with these hydrogels for the last three years, developing ways to improve the growth of blood vessels, a process called angiogenesis. "Our goal was to induce the growth of functional new blood vessels within the hydrogel to treat wounds and ischemic disease, which reduces blood flow to organs like the heart," Sun said. "These tests on burn injuries just proved its potential."

Gerecht says the hydrogel is constructed in such a way that it allows tissue regeneration and blood vessel formation to occur very quickly. "Inflammatory cells are able to easily penetrate and degrade the hydrogel, enabling blood vessels to fill in and support wound healing and the growth of new tissue," she said. For burns, the faster this process occurs, Gerecht added, the less there is a chance for scarring.


Originally, her team intended to load the gel with stem cells and infuse it with growth factors to trigger and direct the tissue development. Instead, they tested the gel alone. "We were surprised to see such complete regeneration in the absence of any added biological signals," Gerecht said.
Sun added, "Complete skin regeneration is desired for various wound injuries. With further fine-tuning of these kinds of biomaterial frameworks, we may restore normal skin structures for other injuries such as skin ulcers."
Gerecht and Harmon say they don't fully understand how the hydrogel dressing is working. After it is applied, the tissue progresses through the various stages of wound repair, Gerecht said. After 21 days, the gel has been harmlessly absorbed, and the tissue continues to return to the appearance of normal skin.

The hydrogel is mainly made of water with dissolved dextran -- a polysaccharide (sugar molecule chains). "It also could be that the physical structure of the hydrogel guides the repair," Gerecht said. Harmon speculates that the hydrogel may recruit circulating bone marrow stem cells in the bloodstream. Stem cells are special cells that can grow into practically any sort of tissue if provided with the right chemical cue. "It's possible the gel is somehow signaling the stem cells to become new skin and blood vessels," Harmon said.
Additional co-authors of the study included Charles Steenbergen, a professor in the Department of Pathology; Karen Fox-Talbot, a senior research specialist from the Johns Hopkins School of Medicine; and physician researchers Xianjie Zhang, Raul Sebastian and Maura Reinblatt from the Department of Surgery and Hendrix Burn and Wound Lab. From the Whiting School's Department of Chemical and Biomolecular Engineering, other co-authors were doctoral students Yu-I (Tom) Shen and Laura Dickinson, who is a Johns Hopkins Institute for NanoBioTechnology (INBT) National Science Foundation IGERT fellow. Gerecht is an affiliated faculty member of INBT.
The work was funded in part by the Maryland Stem Cell Research Fund Exploratory Grant and Postdoctoral Fellowship and the National Institutes of Health.
The Johns Hopkins Technology Transfer staff has filed a provisional patent application to protect the intellectual property involved in this project.

Catalyzing Oxygen


Normally Oxygen is fairly tight bound to the hydrogen in water. If it can be easily removed, it has potential benefits for certain energy and fuel systems. A team of researchers at MIT has found one of the most effective catalysts ever discovered for splitting oxygen atoms from water molecules — a key reaction for advanced energy-storage systems, including electrolyzers, to produce hydrogen fuel and rechargeable batteries. This new catalyst liberates oxygen at more than 10 times the rate of the best previously known catalyst of its type.
The new compound, composed of cobalt, iron and oxygen with other metals, splits oxygen from water (called the Oxygen Evolution Reaction, or OER) at a rate at least an order of magnitude higher than the compound currently considered the gold standard for such reactions, the team says. The compound’s high level of activity was predicted from a systematic experimental study that looked at the catalytic activity of 10 known compounds.
The team, which includes materials science and engineering graduate student Jin Suntivich, mechanical engineering graduate student Kevin J. May and professor Yang Shao-Horn, published their results in Science on Oct. 28.

The scientists found that reactivity depended on a specific characteristic: the configuration of the outermost electron of transition metal ions. They were able to use this information to predict the high reactivity of the new compound — which they then confirmed in lab tests.
"We not only identified a fundamental principle that governs the OER activity of different compounds, but also we actually found this new compound" based on that principle, says Shao-Horn.Environment Clean Generations
Many other groups have been searching for more efficient catalysts to speed the splitting of water into hydrogen and oxygen. This reaction is key to the production of hydrogen as a fuel to be used in cars; the operation of some rechargeable batteries, including zinc-air batteries; and to generate electricity in devices called fuel cells. Two catalysts are needed for such a reaction — one that liberates the hydrogen atoms, and another for the oxygen atoms — but the oxygen reaction has been the limiting factor in such systems.

Fuel cells come in many varieties; however, they all work in the same general manner. They are made up of three segments which are sandwiched together: the anode, the electrolyte, and the cathode. Two chemical reactions occur at the interfaces of the three different segments. The net result of the two reactions is that fuel is consumed, water or carbon dioxide is created, and an electric current is created, which can be used to power electrical devices, normally referred to as the load.Environment Clean Generations
At the anode a catalyst oxidizes the fuel, usually hydrogen, turning the fuel into a positively charged ion and a negatively charged electron. The electrolyte is a substance specifically designed so ions can pass through it, but the electrons cannot. The freed electrons travel through a wire creating the electric current. The ions travel through the electrolyte to the cathode. Once reaching the cathode, the ions are reunited with the electrons and the two react with a third chemical, usually oxygen, to create water or carbon dioxide.
In addition, even though they have already found the highest rate of activity yet seen, they plan to continue searching for even more efficient catalyst materials. "It’s our belief that there may be others with even higher activity," Shao-Horn says.Environment Clean Generations
Jens Norskov, a professor of chemical engineering at Stanford University and director of the Suncat Center for Interface Science and Catalysis there, who was not involved in this work, says, "I find this an extremely interesting rational design approach to finding new catalysts for a very important and demanding problem."

 read more



by "environment clean generations"

My Car Runs on Coffee


An unassuming-looking old car powered not by gas, but by coffee, recently broke the land speed record for a vehicle powered by gasification, clocking in at a cool 66.5 miles per hour on average. Gasification works by introducing oxygen or steam to an organic, carbon-based material (such as coffee beans, in this case) and increasing the temperature until a synthetic gas made of carbon monoxide, carbon dioxide, hydrogen and methane is created and burned up by a regular internal combustion engine.

Environment-Clean-Generations

 The Coffee Car, originally built by British engineers for the BBC show Bang Goes the Theory, already holds a world record, for longest journey by a coffee-powered car (over 200 miles), and now the second generation has proven itself on the speed front as well. The previous record, held by Americans, was just 47 mph, and the car was fueled by wood chips. In this case, it looks like coffee, the same sweet nectar that gives so many working men and women around the world the energy to go the distance, has proven superior once again.
Get acquainted with the Coffee Car in the video below, or check out the record-breaking drive over at the BBC.

by "environment clean generations"

Hydrogen from Solar Panels


While roofs across the world sport photovoltaic solar panels to convert sunlight into electricity, a Duke University engineer believes a novel hybrid system can wring even more useful energy out of the sun's rays.

nstead of systems based on standard solar panels, Duke engineer Nico Hotz proposes a hybrid option in which sunlight heats a combination of water and methanol in a maze of glass tubes on a rooftop. After two catalytic reactions, the system produces hydrogen much more efficiently than current technology without significant impurities. The resulting hydrogen can be stored and used on demand in fuel cells.

For his analysis, Hotz compared the hybrid system to three different technologies in terms of their exergetic performance. Exergy is a way of describing how much of a given quantity of energy can theoretically be converted to useful work.


"The hybrid system achieved exergetic efficiencies of 28.5 percent in the summer and 18.5 percent in the winter, compared to 5 to 15 percent for the conventional systems in the summer, and 2.5 to 5 percent in the winter," said Hotz, assistant professor of mechanical engineering and materials science at Duke's Pratt School of Engineering.


The paper describing the results of Hotz's analysis was named the top paper during the ASME Energy Sustainability Fuel Cell 2011 conference in Washington, D.C. Hotz recently joined the Duke faculty after completing post-graduate work at the University of California-Berkeley, where he analyzed a model of the new system. He is currently constructing one of the systems at Duke to test whether or not the theoretical efficiencies are born out experimentally.

Hotz's comparisons took place during the months of July and February in order to measure each system's performance during summer and winter months.

Like other solar-based systems, the hybrid system begins with the collection of sunlight. Then things get different. While the hybrid device might look like a traditional solar collector from the distance, it is actually a series of copper tubes coated with a thin layer of aluminum and aluminum oxide and partly filled with catalytic nanoparticles. A combination of water and methanol flows through the tubes, which are sealed in a vacuum.

"This set-up allows up to 95 percent of the sunlight to be absorbed with very little being lost as heat to the surroundings," Hotz said. "This is crucial because it permits us to achieve temperatures of well over 200 degrees Celsius within the tubes. By comparison, a standard solar collector can only heat water between 60 and 70 degrees Celsius."


Once the evaporated liquid achieves these higher temperatures, tiny amounts of a catalyst are added, which produces hydrogen. This combination of high temperature and added catalysts produces hydrogen very efficiently, Hotz said. The resulting hydrogen can then be immediately directed to a fuel cell to provide electricity to a building during the day, or compressed and stored in a tank to provide power later.


The three systems examined in the analysis were the standard photovoltaic cell which converts sunlight directly into electricity to then split water electrolytically into hydrogen and oxygen; a photocatalytic system producing hydrogen similar to Hotz's system, but simpler and not mature yet; and a system in which photovoltaic cells turn sunlight into electricity which is then stored in different types of batteries (with lithium ion being the most efficient).

"We performed a cost analysis and found that the hybrid solar-methanol is the least expensive solution, considering the total installation costs of $7,900 if designed to fulfill the requirements in summer, although this is still much more expensive than a conventional fossil fuel-fed generator," Hotz said.

Costs and efficiencies of systems can vary widely depending on location -- since the roof-mounted collectors that could provide all the building's needs in summer might not be enough for winter. A rooftop system large enough to supply all of a winter's electrical needs would produce more energy than needed in summer, so the owner could decide to shut down portions of the rooftop structure or, if possible, sell excess energy back to the grid.


"The installation costs per year including the fuel costs, and the price per amount of electricity produced, however showed that the (hybrid) solar scenarios can compete with the fossil fuel-based system to some degree," Hotz said. 'In summer, the first and third scenarios, as well as the hybrid system, are cheaper than a propane- or diesel-combusting generator."


This could be an important consideration, especially if a structure is to be located in a remote area where traditional forms of energy would be too difficult or expensive to obtain.

Hotz's research was supported by the Swiss National Science Fund. Joining him in the study were UC-Berkeley's Heng Pan and Costas Grigoropoulos, as well as Seung H. Ko of the Korea Advanced Institute of Science and Technology, Daejon.
by "environment clean generations"

Manufacturing Water


Water is becoming an increasingly important issue in the developed world. But this issue is nothing new for other, less developed nations. For centuries, clean drinking water has been hard to come by for many populations, especially the poor. In some areas, water may be available, but it's often disease-ridden, and drinking it can be fatal. In other areas, a viable water supply is sim­ply not available at all.



­A 2006 United Nations report estimated that as much as 20 percent of the world's population doesn't have access to clean drinking water [source: BBC]. This leads us to wonder: If we need it so badly, why can't we jus­t make it?

­Water is made of two hydrogen atoms attached to an oxygen atom. This seems like pretty basic chemistry, so why don't we just smash them together and solve the world­'s water ills? Theoretically, this is possible, but it would be an extrem­ely dangerous process, too.

To create water, oxygen and hydrogen atoms must be present. Mixing them together doesn't help; you're still left with just separate hydrogen and oxygen atoms. The orbits of each atom's electrons must become linked, and to do that we must have a sudden burst of energy to get these shy things to hook up.

­Since hydrogen is extremely flammable and oxygen supports combustion, it wouldn't take much to create this force. Pretty much all we need is a spark -- not even a flame -- and boom! We've got water. The hydrogen and oxygen atoms' electrons' orbits have been conjoined.

But we also have an explosion and -- if our experiment was big enough, a deadly one. The ill-fated blimp, the Hindenburg, was filled with hydrogen to keep it afloat. As it approached New Jersey on May 6, 1937, to land after a trans-Atlantic voyage, static electricity (or an act of sabotage, according to some) caused the hydrogen to spark.

When mixed with the ambient oxygen in the air, the hydrogen exploded, enveloping the Hindenburg in a ball of fire that completely destroyed the ship within half a minute.
There was, however, also a lot of water created by this explosion.

To create enough drinking water to sustain the global population, a very dangerous and incredibly large-scale process would be required. Still, over a century ago the thought ­of an internal combustion engine -- with its controlled repeated explosions -- seemed dangerously mad. And as water becomes scarcer, the process of joining hydrogen atoms to oxygen atoms may become more attractive than it is currently. Necessity, after all, is the mother of invention.

But there are safer ways of creating water out of thin air, and projects to do just that are already underway. Read the next page to learn about a few mad scientists who may end up solving the world's impending water crisis.



  
   Creating Water from Thin Air

There's water around us all the time, we just can't see it. The air in our atmosphere contains a varying amount of water vapor, depending on the weather. When it's hot and humid, evaporated water can make up as much as 6 percent of the air we breathe. On cold, dry days it can be as low as .07 percent of the air's makeup [source: U.S. Department of Energy].

 
This air is part of the water cycle, an Earth process. Crudely put, water evaporates out of rivers, lakes and the ocean. It's carried up into the atmosphere, where it can collect into clouds (which are actually just accumulations of water vapor). After the clouds reach the saturation point, water droplets will form, which we know as rain. This rain runs off the land and collects into bodies of water, where the whole process begins again.

The problem is, the water cycle goes through dry periods. Because of this, some inventors have begun to wonder, why wait? Why not pull the water vapor right out of the air?

One Australian inventor has done just that. Max Whisson is the creator of the Whisson Windmill, a machine that uses wind power to collect water out of the atmosphere. Whisson points out to the Australian Broadcasting Corporation that water vapor amounts to about "10,000 billion litres [about 2,600 billion gallons] in the bottom kilometere [about .62 miles] of air around the world" [source: ABC]. What's more, this water is replaced every few hours as part of the water cycle.

Whisson's windmill uses refrigerant to cool the blades of his mill, which he's named Max Water. These blades are situated vertically rather than diagonally, so that even the slightest breeze turns them. The cool blades cool the air, causing the water vapor to condense -- become liquid water again. This condensation is then collected and stored.

Whisson's windmill can collect as much as 2,600 gallons of water from the air per day.
Whisson says that his biggest challenge isn't the engineering behind his invention but finding the venture capital to back it -- he says that people think it's too good to be true. This problem would sound familiar to a pair of American inventors who have a water-making invention of their own.

Jonathan Wright and David Richards have created a machine that's similar to Whisson's, except that it resembles a collapsible pull-behind camper more than it favors a windmill. This invention -- which its creators call AquaMagic -- pulls air directly from the area surrounding it. Inside the machine, the air is cooled via a refrigerated coil. The air condenses, and the water is collected, purified, and released through a spigot.

The AquaMagic machine -- which currently cost about $28,000 per unit -- can produce up to 120 gallons of purified water in 24 hours, and since it's small it can be toted to disaster sites and Sub-Saharan Africa alike. But it also has one drawback: To produce this much water, AquaMagic requires about 12 gallons of diesel fuel. It's here that the Whisson Windmill (which runs about $43,000 per unit) has a clear advantage over AquaMagic: It's totally green. It runs exclusively on wind power, requiring no fossil fuel. Even the condenser runs off the power generated by the windmill's turbines.

Speaking of the environment, why go to the trouble of collecting water out of the air? Why not simply cause more rain to fall? It may sound far-fetched, but this is actually done -- at times, with catastrophic consequences.

Cloud Seeding and the British Disaster

HowStuffWorks has discussed China's plan to prevent rain during the opening ceremonies of the 2008 Olympics in Beijing. The process, called cloud seeding, works by firing silver iodide into storm clouds in the days leading up to the event. The Chinese government hoped it could essentially "use up" the existing clouds and assure clear skies for the ceremony.

The country's been doing it for decades -- with positive results. But another experiment in cloud seeding, on the other side of the Eurasian land mass, didn't go so smoothly.
Following World War II, the British government was still looking at ways to get a leg up over enemy militaries. The Nazis had come close to destroying Britain, and the United Kingdom had developed a taste for preparation. The British government looked to the skies for an advantage. The Royal Air Force (RAF) began experimenting with cloud seeding. By impregnating the clouds with the particles needed to create a severe thunderstorm, the British could effectively thwart the movement of troops and even literally rain out enemy advances. But the cloud-seeding project went terribly awry.


It's not that the experiments with cloud seeding didn't work. It worked too well.
In 2001, the British Broadcasting Corporation (BBC) investigated rumors that the RAF had seeded the clouds over England. They turned up first-person accounts of some of the pilots who were involved in a top-secret mission called Operation Cumulus. During this August 1952 operation, RAF pilots flew above the cloud line, dropping payloads of dry ice, salt and -- like the Chinese currently use -- silver iodide.

After just 30 minutes, rain began to fall from the infected clouds. At first, the RAF pilots -- dubbed rainmakers by the press -- reputedly celebrated their success. But within the week a deluge began. By the end of the month, North Devon, an area of England near the site of the cloud-seeding experiment, experienced 250 times the normal amount of rainfall [source: BBC].

On August 15, 1952, the day the rain started, an estimated 90 million tons of water coursed through the town of Lynmouth in just one day [source: The Guardian]. Entire trees were uprooted, forming dams and allowing the tide of the two rivers flowing through Lynmouth to grow even stronger in force. Boulders were carried by the current, destroying buildings and carrying residents into the sea. In all, 35 Britons lost their lives that day as a result of the torrential rain. Britain's Ministry of Defense maintains that it had not experimented with cloud seeding prior to the Lynmouth incident.

China and Britain paint two versions of the same picture. On one hand, the Asian nation has successfully created a cloud-seeding program. They've managed to generate irrigation for arid croplands from the ultimate source. But the British disaster shows the potential results of toying with the forces of nature.
And still, we need water more than ever. Using explosions isn't viable to produce water currently, and AquaMagic and Whisson's Windmill aren't being produced on a large enough scale to help with the immediate need for water. Water is a finite resource, and one life on Earth can't do without.
 by "environment clean generations"

Your Car With 0 Emissions WIth Hydrogen-Nanobead-Based Synthetic Gas

Cella Energy's Synthetic Gasoline Cella's CEO Stephen Voller shows off the goods; hydrogen microbeads go under the microscope.

We’re going to go ahead and write this one because it’s all kinds of interesting, but know that we are doing so with all kinds of skepticism, fair readers. Because anytime anyone claims to have created inexpensive synthetic fuel that will burn in conventional automobile engines with no carbon emissions, you simply have to be on your guard. Nonetheless, UK-based Cella Energy claims to have done exactly that by devising a hydrogen-based synthetic fuel that could replace gasoline in cars.


The technology—reportedly incubated at the Rutherford Appleton Laboratory near Oxford in a top secret four-year program—is based on complex hydrides that are highly unstable, usually degrading rapidly in air. Put simply, the company claims it has found a nanotech-driven method that encapsulates hydrogen at usable concentrations in micro-capsules, allowing it to be handled and burned in conventional engines without the need to store it in dangerous high-pressure tanks or super-cooled environments. From Cella’s website:

Cella Energy have developed a method using a low-cost process called coaxial electrospinning or electrospraying that can trap a complex chemical hydride inside a nano-porous polymer that speeds up the kinetics of hydrogen desorption, reduces the temperature at which the desorption occurs and filters out many if not all of the damaging chemicals. It also protects the hydrides from oxygen and water, making it possible to handle it in air.

This means that basically the micro-capsules are stabilized hydrogen that moves like a fluid, meaning you could pump it into your automobile as-is, with no engine or fuel injection conversion—though Cella readily admits that preliminary deployment of their product would likely be as a fuel-additive that helps to cut down on carbon emissions.

Moreover, Gizmag writes that the fuel could be produced at a fixed price of about $1.50 per gallon, a price that would be stable and immune to the whims of OPEC or anyone else (except Cella, it seems). We’re not exactly sure where to attribute that dollar value, though Gizmag did interview the company’s CEO.

So: $1.50 per gallon carbon-free nano-liquid hydrogen fuel that burns in existing engines. Sound too good to be true? In theory the science makes sense assuming the “electrospinning” process works as well as Cella claims it does. But until those hydrogen micro-beads are powering our flying cars, we remain optimistically skeptical.


 by "environment clean generations"

ITER The Biggest Fusion Reactor

The well-publicized failures of cold fusion may have tainted the field’s reputation, but physicists have been successfully joining nuclei with hot fusion since 1932. Today, research in hot fusion could lead to a clean energy source free from the drawbacks that dog fission power plants. Fusion power plants cannot melt down; they won’t produce long-lived, highly radioactive waste; and fusion fuel cannot be easily weaponized. 

         At the forefront of the effort to realize fusion-based power is ITER, an international collaboration to build the world’s largest fusion reactor. At the heart of the project is a tokamak, a doughnut-shaped vessel that contains the fusion reaction. In this vessel, magnetic fields confine a plasma composed of deuterium and tritium, two isotopes of hydrogen, while particle beams, radio waves and microwaves heat it to 270 million degrees Fahrenheit, the temperature needed to sustain the fusion reaction. 

        During the reaction, the deuterium and tritium nuclei fuse, producing helium and a neutron. In a fusion power plant, those energetic neutrons would heat a structure, called a blanket, in the tokamak and that heat would be used to turn a turbine to produce electricity. 

         The ITER reactor will be the largest tokamak ever made, producing 500 megawatts of power, about the same output as a coal-fired power plant. But ITER won’t generate electricity; it’s just a gigantic physics experiment, albeit one with very high potential benefits. A mere 35 thousandths of an ounce of deuterium-tritium fuel could produce energy equivalent to 2,000 gallons of heating oil. And ITER’s process is “inherently safe,” says Richard Pitts, a senior scientific officer on the project. “It can never, ever be anything like what you see in the fission world--in Chernobyl or Fukushima--and this is why it is so attractive.”
 


         To fully commercialize tokamak-based fusion, developers must overcome several challenges. First is the matter of breeding the tritium; there are only about 50 pounds of it in the world at any given time because it is not naturally occurring and decays quickly. (Deuterium is not radioactive and can be distilled from water).

         Although ITER may use tritium produced by nuclear power plants, a full-scale fusion plant will need to produce its own supply--neutrons from the fusion reaction could be used to convert a stash of lithium into tritium. In addition, physicists must also determine which materials can best withstand the by-products of the fusion reaction, which will wear down the tokamak’s walls. Finally, residual radioactivity in the device will pose maintenance problems because people won’t be able to work safely within the vessel. ITER scientists must develop robots capable of replacing parts that can weigh up to 10 tons.

         ITER will begin experiments in 2019 in France. If those are successful, the data produced by the project will aid the ITER team in the design of DEMO, a proposed 2,000- to 4,000-megawatt demonstration fusion power plant that will be built by 2040.

        

 

Fuel


Engineers inject two hydrogen isotopes, deuterium and tritium, into the tokamak, a high-powered doughnut-shaped vacuum chamber.

Plasma


A strong electric current heats the deuterium and tritium gases and ionizes them, forming a ring of plasma, a glowing soup of charged particles.

Heat


Radio waves, microwaves and high-energy deuterium particle beams heat the plasma. At high temperatures, the deuterium and tritium fuse to form a helium atom and a neutron.


Containment


If the plasma touches the walls of the tokamak, it will scuttle the fusion reaction. The charged particle is confined in a magnetic field made from 39 superconducting poloidal, toroidal and central solenoid magnets positioned around the outside of the doughnut and within its hole.

Lining


The vessel is lined with a steel blanket 1.5 feet thick to protect the tokamak walls from highly energetic neutrons.



 by "environment clean generations"

Hydrogen - Cheaply and Quickly from Microbes



     Transport and storage of hydrogen as energy sources are vital for our future. A microbe's enzyme show how to produce hydrogen in a faster and cheaper way.

            The future of energy lies in transforming electrical energy into chemical energy that can be used again if necessary. The main problem is achieving this as fast and inexpensive enough to be a viable solution. 
            Wherever there is a source of energy, even in the comfort of your own home, hydrogen can be extracted from water. With a storage cell, it can be converted back into electricity. As long as the electricity needed for the process comes from renewable sources such as windmills or solar cells, it is a clean energy, hydrogen is a versatile energy carrier and can be made ​​from environmentally friendly sources such as wind or solar energy.

            Storage cells need a catalyst to accelerate chemical reactions for conversion of hydrogen to water and electricity. Platinum is excellent in this role, but is a very rare and expensive.

            Some microbes produce enzymes for billions of years, enzymes that can can take this role with cheap metals such as iron and nickel. The problem is that these enzymes are difficult to obtain and do not survive outside microbes. 

             Researchers have managed to create a synthetic version, more resistant to these enzymes. So far, managed to take the first step, uniting the two atoms of hydrogen extracted from water and generate hydrogen gas. Furthermore, the synthetic enzyme behaves even better than natural, is 10 times faster and produce 100,000 molecules of hydrogen gas every second  

             However, despite the increased speed, the process consumes too much energy to be viable in practice. Even so, is a first step in obtaining low-cost hydrogen, using iron and nickel catalysts, according to the authors of the research. 
   

by "environment clean generations"

Fuel Cells



According to many experts, we may soon find ourselves using fuel cells to generate electrical power for all sorts of devices we use every day. A fuel cell is a device that uses a source of fuel, such as hydrogen, and an oxidant to create electricity from an electrochemical process.

               Much like the batteries that are found under the hoods of automobiles or in flashlights, a fuel cell converts chemical energy to electrical energy.
All fuel cells have the same basic configuration; an electrolyte and two electrodes. But there are different types of fuel cells, based mainly on what kind of electrolyte they use.

              Many combinations of fuel and oxidant are also possible. The fuel could be diesel or methanol, while air, chlorine, or chlorine dioxide may serve as oxidants. Most fuel cells in use today, however, use hydrogen and oxygen as the chemicals.

             Fuel cells have three main applications: transportation, portable uses, and stationary installations.
In the future, fuel cells could power our cars, with hydrogen replacing the petroleum fuel that is used in most vehicles today. Many vehicle manufacturers are actively researching and developing transportation fuel cell technologies.

             Stationary fuel cells are the largest, most powerful fuel cells. They are designed to provide a clean, reliable source of on-site power to hospitals, banks, airports, military bases, schools, and homes.

             Fuel cells can power almost any portable device or machine that uses batteries. Unlike a typical battery, which eventually goes dead, a fuel cell continues to produce energy as long as fuel and oxidant are supplied. Laptop computers, cellular phones, video recorders, and hearing aids could be powered by portable fuel cells.

             Fuel cells have strong benefits over conventional combustion-based technologies currently used in many power plants and cars. They produce much smaller quantities of greenhouse gases and none of the air pollutants that create smog and cause health problems. If pure hydrogen is used as a fuel, fuel cells emit only heat and water as a byproduct. Hydrogen-powered fuel cells are also far more energy efficient than traditional combustion technologies.



            The biggest hurdle for fuel cells today is cost. Fuel cells cannot yet compete economically with more traditional energy technologies, though rapid technical advances are being made. Although hydrogen is the most abundant element in the universe, it is difficult to store and distribute. Canisters of pure hydrogen are readily available from hydrogen producers, but as of now, you can't just fill up with hydrogen at a local gas station.

             Many people do have access to natural gas or propane tanks at their houses, however, so it is likely that these fuels will be used to power future home fuel cells. Methanol, a liquid fuel, is easily transportable, like gasoline, and could be used in automobile fuel cells. However, also like gasoline, methanol produces polluting carbon dioxide.



by "environment clean generations"

Algae Airships

 

               
Architect Vincent Callebaut likes to dream about the future. And when he does so he thinks about green architectural and technological solutions that will deal with global warming, greenhouse gases and the rise of ocean and sea levels.
             This Hydrogenase Project is based upon the futuristic thinking that one day there will be bio-hydrogen airships that use sunlight and algae to create H2 for power. This bio-hydrogen photosynthesis will allow these heavier than air, airships to fly partly because of their unique helix design.

             Callebaut states “Able to produce electricity and biofuel without emit CO2 or other polluting substances, the hydrogen especially is nowadays such as a very promising clean energy source. Therefore (its production that respects the environment and in sufficient quantity) is a study theme that interests the biggest scientific international groups.
              “Actually, at the end of the 90s it has been discovered that the private sulphur micro-seaweeds go from the oxygen production (classical photosynthesis) to the hydrogen production. Such as a growing tree uses the solar radiance to manufacture organic material, we aim today at producing by photosynthesis some dihydrogen (i.e. gaseous hydrogen) from living micro-organisms as seaweeds from the Chlamydomonas reinhardtii family that owns enzyme of hydrogenase type.”


              He goes onto say that by the year 2020, “Hydrogenase is thus a jumbo jet vessel (DGP) that flies at an average of 2 000 meters high. This cargo measures almost 400 meters high for 250 000m3. It can carry up to 200 tons of freight at 175 km/h (i.e. twice the speed of a ship and more than one and a half time than the one of a truck). Seven times slower than an airplane, it has an action potential between 5 and 10 000km and re-teach our contemporary travelers the long time of sea cruises and the praise of the slowness. The history of the transports which was until now summarized in a study that reveals to always go faster, is soon finished for the benefit of ‘better travel’ in airship!”

              Callebaut also has an idea for “Lilypad Cities” that will address the need to replace islands that have been overtaken by global warming and sea level rise. Here is a video of his amazing design.
This is not to say that these futuristic design ideas will ever come to fruition. But, the fact that someone is dreaming, developing new ideas and thinking outside the box now may inspire others to come up with more practical solutions for using hydrogen to address climate problems and energy independence in the future.
 www.hydrogencarsnow.com/

by "environment clean generations"

Energy equals mass times the velocity of light squared - E=mc2

  
             
                  Albert Einstein is probably one of the most famous scientists. One of his greatest achievements is the formula E = mc2. Despite its familiarity, many people do not understand it.
                  Einstein realized that actually matter and energy are different forms of the same thing. Matter can be converted into energy (nuclear bomb)and energy into matter (big-bang).
                  For example, consider a simple hydrogen atom, basically composed of a single proton. This subatomic particle has a mass of 0.000 000 000 000 000 000 000 000 001 672 kg.  
                 This is a tiny mass indeed. For instance, in one kilogram of pure water, the mass of hydrogen atoms amounts to just slightly more than 111 grams, or 0.111 kg. Einstein's formula tells us the amount of energy that would result if the matter had suddenly turned into energy.
             
                 Theory says you must multiply the mass by the square of the speed of light (300.000km/sec)
                  E = mc2 = 0.111 x 300,000,000 x 300,000,000 = 10,000,000,000,000,000 Jouli 
           
                 This is an incredible amount of energy! A Joule is not a large unit of energy ... one Joule is about the energy released when you drop a textbook to the floor.  Yet the amount of energy in 30 grams of hydrogen atoms s equivalent to burning hundreds of thousands of kilograms of gasoline! 
                 If you consider all the energy of a kilogram of water that contains oxygen atoms, the total energy is equal to approx. 35 million liters of gasoline. This energy can be released? Has ever been?
                 The only way for ALL this energy to be released is for the kilogram of water to be totally annhilated. This process involves the complete destruction of matter, and occurs only when that matter meets an equal amount of antimatter ... a substance composed of mass with a negative charge. Antimatter does exist; it is observable as single subatomic particles in radioactive decay, and has been created in the laboratory. 
                 But it is rather short-lived, since it annihilates itself and an equal quantity of ordinary matter as soon as it encounters anything. For this reason, it has not yet been made in measurable quantities, so our kilogram of water can't be turned into energy by mixing it with 'antiwater'. At least, not yet.

                 With the tehnology nowadays creating 1 milligram of antimatter would cost us as much as 1.000.000.000 years.. so something has to be done if we want to harvest energy that way. 
          
"by environment clean generations"

 
 

Related Posts Plugin for WordPress, Blogger...

Search

Custom Search

 
Design by Wordpress Theme | Bloggerized by Free Blogger Templates | coupon codes